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Abstract:Vibrations of circular cylindrical shells made of 
layered composite materials are considered. The shells are 
weakened by circumferential cracks. The influence of 
circumferential cracks with constant depth on the vibration of the 
shell is prescribed with the aid of a matrix of local flexibility 
coupled with the coefficient of the stress intensity known in the 
linear elastic fracture mechanics. Effect of a multiscale factor on 
the axisymmetric vibrations of composite and layered cylindrical 
shells with cracks is considered. Dependence of the Young’s 
modulus from quantity of molecular layers of a cylindrical shell is 
investigated. 

 Numerical results are presented for the case of the shell with 
one circular crack. 
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I .  INTRODUCTION 

NTILthe fracture takes place the large class of 
composites behave as elastic bodies, following the 

Hooke's law. Usually the facture of bodies from such 
material is brittle, for example, destruction of bodies from 
fiber-glass. Therefore for investigations of small 
deformations in bodies from such materials, methods of the 
classical theory of elasticity of an anisotropic body can be 
used. 

Circular cylindrical shells, made of composite materials, 
are widely used in many fields of engineering, especially in 
civil, mechanical, aerospace, marine and chemical industry. 
Vibration of circular cylindrical shells from composite 
materials is of interest in a number of different fields. 

The problem of the theory of elasticity of an anisotropic 
body is similar to that of an isotropic body. The equations of 
balance and the geometrical equations of the theory of 
elasticity do not depend on a choice of a material of a body. 
Only physical equations are different because laws of 
deformation for anisotropic and isotropic bodies are 
different. For investigations of laws of deformation of 
anisotropic materials like fiber-glasses or other composite 
materials there are two approaches. The first approach, so-
called phenomenological, considers a composite material, as 
a homogeneous monolithic anisotropic material. 
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 In this case mechanical parametersof a material (limits of 
elasticity,durability, etc.) are considered as some integral 
characteristics. 

Exact definition of modulus of elasticity of such materials 
is an intricate problem. Such approach assumes direct usage 
of the theory of elasticity of the anisotropic continuums. The 
second approach – structural – assumes that a composite 
material is considered as an inhomogeneous reinforced 
continuum. In the case of this approach the mechanical 
characteristics of the reinforced material are defined through 
mechanical characteristics of initial components - matrix 
and fibre. For example, the rule of mixture is used widely 
[16], where the modulus of elasticity of composite is defined 
as  
 

.mmbbk VEVαEE +=  

 
Here EbandEmare moduli of elasticity of the fibre and 

matrix, respectively; Ek - modulus of elasticity of the 
composite; α - the coefficient depending on the layout of a 
fibre [14] (for unidirectional lay out α =1, for perpendicular 
α =0,5, for casual α =3/8); Vb and  Vm –volumes of fibre and 
matrix in the composite. Both these approaches supplement 
each other mutually at development. As show experiments, 
elastic composites are anisotropic. 
     Substance transition from macro- and micro- to the 
nanosizes involves high-quality changes in their physical, 
mechanical, physical and chemical and other properties. 
These changes are so perspective in the practical therefore 
before scientists is an urgent task to study and understand 
the mechanism of their emergence. 
     Than the bodies having the nanosizes, differ from usual 
bodies? The most obvious distinction - growth of a role of 
near-surface area. Interaction between molecules (atoms) on 
a surface differs from volume as they have no neighbors 
from outer side. In volume, block, bodies the contribution of 
this layer with macroscopic properties is smallest, and it 
usually neglect. However when the sizes of a body become 
small, commensurable with molecular sizes 
(nanodimensional), influence of near-surface area becomes 
considerable, and properties of substance qualitatively 
change. 
Since the crack- like defects are practically unavoidable 
during the manufacturing and operation of structural 
elements there exists the need for the information about the 
sensitivity of vibrational parameters of the shell with respect 
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to defects. Vibration and stability of notched beams was 
investigated by Dimarogonas [1], Chondros and 
Dimarogonas [2,3], Rizos et al [4], Liang et al [5], Kisa et al 
[6], Lellep and Sakkov [7],  Krawczuk, Ostachowich [8,9] 
making use of the weightless rotational spring model. In the 
paper [12-14, 17] Lellep and Roots investigated 
axisymmetric vibrations of cylindrical shells with 
circumferential cracks. 

According to this concept a beam with a crack can be 
treated as a structure consisting of two segments. These 
segments are connected each other with a rotational spring 
which stiffness is coupled with the stress intensity 
coefficient of the structure with the crack. 
This idea was extended to composite structures and to 
buckling of composite columns by Nikpour and 
Dimarogonas [10,11]. 

In this paper we will study free axisymmetric vibrations 
of composite andlayered cylindrical shells with cracks and 
effect of a multiscale factor on them. 

I I .  FORMULATION OF THE PROBLEM 
FOR LAYERED SHELLS 

Consider a layered, circular cylindrical shell with length 
land radius R(see Fig. 1). The shell can be divided into n 
ring segments. The symbol n denotes the number of total 
ring segments separated from the rest cylindrical shell by the 
sections where the thickness variations take place. Every jth 
ring segment of shell has q layers. Each layer is isotropic 
with thickness hij, Young’s modulus Eij, Poisson’sratio νij, 
and mass density ρij as show in Fig.1. 
 

 
Fig.1: Geometry of a layered shell. 

 
Let’s denote 

 
ρij= ρ1jdij,                               (1) 

 
wheredijis a constant of proportionality, d1j=1and similarly 
Young’s modulus for each layer 
 

Eij=E1jeij,          (2) 
 
whereeijis a constant of proportionality, e1j=1. 
We will denote the thickness of each layer hijby 
 

hij=(zi+1j-zij)h1j,                      (3) 
 
wherezijis a local coordinate of a layer with the thickness 
hjand z1j=0. 

The mass of jth ring segment will be equal 
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     For the jth ring segment, the free axisymmetric vibration 
motion can be described by the equations [12] 
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where for calculation of thin shells often use following 
formulas [15]: 
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Let’s donate uj(x,t) as the axial displacement and  

wj(x,t)  as the radial displacement of the jth ring segment, 
where t is time. 

If for all ring segments νij=ν ,by using  (1) - (3) and [12] 
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theforce Nj and bending moment Mj(6) can be written as 
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I I I .  DETERMINATION OF ELASTIC 
CHARACTERISTICS OF UNIDIRECTIONAL 

FIBROUS COMPOSITES  
Composite materials have high specific durability and 
stiffness. Such materials allow in present-day machines and 
designs to lower the weight and to raise corrosion stability. 
It opens essentially new possibilities in the optimum design 
of structures and creation of new designs. Engineering 
approaches to calculation of composites allow to find 
approximate results, analytical approaches yield exact 
results only for periodic structures with enough simple 
geometry. 

 Let us consider small deflections of axisymmetric 
circular cylindrical shells similarly with that done in chapter 
2. In this case the material of shells is a unidirectional 
fibrous composite. Let Efand Em be the Young’s modulus of 
fiber material and matrix material, respectively; υf  is the 
volume fraction of fibres, d is the diameter of a fibre. Let’s 
denote the ratio of Young’s moduli  
 

Ef/ Em=f. 
 
     In this case the basic equations of static equilibrium of 
the shell are of the following form [12] 
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Note that relations (16) hold good, if E=const and 
ν=const. However, E=E(z) and  ν=ν(z),in a layered or 
laminate shell. In a composite structure 
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Thus the generalized stresses in a non-homogeneous shell 

should be calculated as 
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Comparing (11) with (12), one can evaluate the mean 

values of elastic moduli as 
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IV.  EFFECT OF A MULTISCALE FACTOR 
ON THE YOUNG’S MODULUS OF A 

CYLINDRICAL SHELL 
The most obvious distinction between bodies having the 
nanosizes and usual bodies - growth of a role of near-surface 
area. Interaction between molecules (atoms) on a surface 
differs from volume as they have no neighbors from outer 
side. It is reason of reorganization of surface area. In 
volume, block, bodies the contribution of this layer with 
macroscopic properties is smallest, and it usually neglect. 
However when the sizes of a body become small, 
commensurable with molecular sizes (nanodimensional), 
influence of near-surface area becomes considerable, and 
properties of substance qualitatively change. 

The following example shows it. Consider a layered, 
circular cylindrical shell with length l and radius R, like in 
p.2. We will denote 2 types of layers: internal and external 
with molecular sizes. So we will have 2 surface layers and 
n-2 internal layers. All layers have thickness hi. Let’s denote  
 

E2=αE1, 
 
where α is a constant of proportionality between Young’s 
modulus of surface layer E2 and Young’s modulus of 
internal layer E1 and each layer has Poisson’s ratioν. 

In this case bending moment M(8) can be written as 
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Usually in the theory of shells bending moment looks like 

[15] 
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whereE∞ is Young’s modulus of shell. 

By comparing formulas (13) and (14), we find 
 

E∞/ E1= a /n3.(15) 
 

The results of calculations by (15) regarding to the tuba 
with different constant of proportionality between Young’s 
modulus of surface layer E2 and Young’s modulus of 
internal layer E1 are presented in Figs.2-3. 

The influence number of layers n in the tubeon the E∞/ 
E1for different values of αis depicted in Fig. 2. Here  

Young’s modulus of surface layer E2larger than Young’s 
modulus of internal layer E1,thus here isα>1.   

In Fig. 3 different curves corresponding to different 
values of α<1. Here Young’s modulus of surface layer 
E2less  than Young’s modulus of internal layer E1. 

From Figs. 2-3 we can see when n<200, Young’s 
modulus of shell E∞ significantly depends on Young’s 
modulus of surface layer E2  andE∞/ E1→1 if n→∞. 

 

 
 
Fig.2. Dependence E∞/ E1 from number of layers n in the 

tube for the cases α=2; 1.5; 1.3; 1.2; 1.1. 
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Fig.3. Dependence E∞/ E1 from number of layers n in the 

tube for the cases α=0.9; 0.7; 0.5; 0.3; 0.1. 

V.  THE CRACK DISTURBANCE 
FUNCTION 

The presence of flaws or cracks in a structural member 
involves considerable local flexibility. Additional local 
flexibility due to a crack depends on the crack geometry as 
well as on the geometry of the structural element and its 
loading. Probably the first attempt to prescribe the local 
flexibility of a cracked beam was undertaken by Irwin 
[18]who recognized the relationship between the 
compliance C of the beam and stress intensity factor K. 
Later on, Rizos, Aspragathos, Dimarogonas[19]; 
Dimarogonas[1]; Chondros, Dimarogonas, Yao [20]; Kukla 
[21] introduced so called massless rotating spring model 
which reveals the relationship between the stress intensity 
factor and local compliance of the beam. In the present 
study we attempt to extend this approach to axisymmetric 
vibrations of circular cylindrical nanoshells with circular 
cracks of constant depth. 
     Let us consider the crack located at the cross section x=aj 
and let the segments adjacent to the crack have thicknesses 
hj-1 and hj, respectively. According to the current approach it 

is assumed that the slope of deflection w′  is discontinuous, 
e.g. 
 

,00 jjj θ,t)(aw,t)-(aw =−′+′                       (16) 

 
whereθj=0.  
     The quantity θj can be treated as an additional angle 
caused by the crack at x=aj. Ifθj is a generalized coordinate 
then corresponding generalized force is M(aj) whereas  
 

,)M(aCθ jjj =                      (17) 

 
whereCj stands for the additional compliance of the shell at 
x=aj. Note that the compliance C is a quantity reverse to the 
stiffness KT of the shell. On the other hand,  
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provided TU  is the extra strain energy due to the crack. It 
immediately follows from (17) and (18) that 
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Note that equalities (17) - (20) are well known in the 

linear elastic fracture mechanics in the case when the 
generalized displacement and generalized force are uj and 
Pj, respectively (see [22-24]). 
     Generalized stresses, energy release rate G and the stress 
intensity factor K are related to each other as  
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whereA stands for the crack surface area and EE =′  for the 
plane stress state and )νE/(1E 2−=′ for the plane 
deformation state. 
     The stress intensity factor is defined as  
 

)
h
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(see[25]). Here c is the crack depth and σ=6M/h2whereas F 
stands for a function to be determined experimentally. When 
applying (20) – (23) for the cross section x=aj with crack 
depth cj one has 
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providedhj= hj–1andMj=M(aj).We introduce the notation 
sj=cj/hj . 

Thus it follows from (24) that 
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for the plane stress state. It is assumed herein that Cj=0 
whensj=0. 
     The function F(sj)in (23) – (26) is called shape function 
as it is different for experimental specimens of different 
shape. Many authors have investigated the problem of 
determination of the stress intensity factor for various 
specimens (among others Brown and Srawley, 1967; Freund 
and Hermann, 1976; Irwin, 1960; Tada, Paris, Irwin, 2000). 
     In the present study we are resorting to the data of 
experiments conducted by Brown and Srawley which can be 
approximated as (see [25]) 
 

.25,825,1114,533,071,93 432
jjjjj ssss)F(s +−+−=   (27) 
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The function (29) is employed also in papers by 
Dimarogonas[1];,Chondros, Dimarogonas, Yao [20];, 
Kukla[21];. 
     According to the concept of massless rotating spring one 
can equalize KTj=1/Cjand thus  
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From (17) with (7), (8) one obtains  

 

.
112 2

3

,t)(aw
)ν(K

Eh
θ j

Tj

j
j +′′⋅

−
−= (32) 

VI.  SOLUTION OF  GOVERNING 
EQUATIONS FOR LAYERED SHELLS 

By using (4) - (8) the equation of motion (5) of jth ring 
segment can be described by the equation 
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Evidently, it is reasonable to look for the general solution of 
the equation (33) in the form 
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Frequency of free vibrations of a layered shell will be equal 
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where .hk/r jj = Here k is characteristic number. 

 The general solution of the linear fourth order equation 
(36) can be presented as 
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Assume that the ends of the shell are simply supported. 

We arrive at the boundary conditions at the points x=0 and 
x=l

  
w=0,          Mx=0. 
 

It is known in the linear elastic fracture mechanics that 
repeated loading and stress concentration at sharp corners 
entails cracks. Thus it is reasonable to assume that at the re-
entrant corners of steps e.g. at x=aj (j=0,..., n)cracks of 
depth cj are located. For the simplicity sake we assume 
that these flaws are stable circular surface cracks. In the 
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present study like in [1-4] no attention will be paid to the 
crack extension during operation of the structure. The 
concontinuity and jump conditions at x=a are (see [12]) 
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is the stress correction function and is employed in papers 
[1, 2]. We introduce the notation s=c/h.   
     Let us consider now the case when n=2. By using 
equation (8) we can rewrite the equation for definition of 
characteristic number k (see [12]) as 
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Here ā0 and ā 1 –are the values of āj for j=0 and j=1, 

respectively. 

 
a) Crack model I     b) Crack model II 
 

Fig.4. Two models of a crack in shell. 
In the presented solution of governing equations for layered 
shells we used the crack model I as shown in Fig.4 a). 

The crack model IIas shown in Fig.4 b) is more preferable to 
use on the molecular (atomic) level of body. In this case the 
shell with a crack is simulated geometrically as a two-
stepped shell with small length of the intermediate section. 
This intermediate section has a size as ainteratomic distance. 
In angular points of this intermediate sectionx=a1and 
x=a2we will have the following continuity conditions 
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VII .  NUMERICAL RESULTS 
     For an illustration of the method offered in that article the 
simply supported shell has been considered (See Fig.5).  
 

 
Fig. 5.Cylindrical shell with fiber-glass layer. 

 
The shell under consideration has a uniform shell wall with 
Young’s modulus Emfor x∈(0,a)whereas it consists of two 
layers with Young’s moduli Emand Esrespectively, and 
thickness h1 for x∈(a,l) , as shown in Fig. 5. Geometrical 
parameters for the one-stepped shell are: l=0,6; h0=0,006; 
h1=γh0; γ=0,7. It is assumed herein that the material of the 
shell segment with h0is a homogeneous elastic material -
aluminium-lithium alloy with Em=76GPa. The shell segment 
with h1 has two layers. The inner layer is made of the same 
material as the another segment and the material of the top 
layer is a fiber-glass. In the segment with h1, v is the volume 
fraction of fibres. We will consider four kinds of fiber-
glasses with Es= 20GPa, 35GPa, 50GPa, 152GPa (s= Es/ 
Em), respectively.In this case the equation for definition of 
characteristic number k is 
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The results of calculations regarding to the shell with 

simply supported ends are presented in Figs. 6-7. The 
influence of the crack c/h on the characteristic number k for 
the fixed values ν=0,2; β=0,2; γ=0,7 and different values of s 
is depicted in Fig. 6. In Fig. 7 different curves corresponding 
to different values of νare presented in the case s=2; β=0,2; 
γ=0,7. Here β=a1/l ,γ=h1/h0, as in previous sections of the 
study. 
     Calculations carried out showed that the characteristic 
number k of the shell decreases when the crack depth 
increases as might be expected. 
     Calculations were made by means of the package 
Mathcad. 
 

 
Fig. 6. Frequency parameters k for simply supported 

shells with one-step thickness variation and creck, the case 
v=0,2; β=0,2; γ=0,7. 

 
Fig.7. Frequency parameters k for simply supported shells 

with one-step thickness variation and crack, the case f=2; 
β=0,2; γ=0,7. 

VIII. CONCLUDING REMARKS  
The natural frequency of vibrations is determined for 

various non-homogeneous materials. 
Calculations carried out showed that the crack location 

and its dimensions have strong influence on the natural 
frequency of vibrations. Results of calculations showed that 
when the crack depth increases then the frequency of natural 
vibrations decreases.  

When the sizes of a body become small, commensurable 
with molecular sizes (nanodimensional), influence of near-
surface area becomes considerable, and properties of 
substance qualitatively change. Therefore at nano level it is 
more preferable to consider layered model of a material. 

ACKNOWLEDGEMENTS 
The support from the Grant MJD433 “Multiscale 

Methods for Fracture” is gratefully acknowledged. 

REFERENCES 
[1] A.D.Dimarogonas,“Vibration of cracked structures: 

a state of the art review", Eng. Fracture 
Mech.,Vol.55, 1996, pp. 831-857. 

[2] T.G.Chondros, A.D.Dimarogonas,J. Yao,“A 
continuous cracked beam vibration theory”,Journal 
of Sound and Vibration, Vol.215, No.1, 1998, 
pp.17-34. 

[3] T.G.Chondros, A.D.Dimarogonas “Vibration of a 
cracked cantilever beam”,Trans. ASME, J. Vibr. 
Acoust,Vol. 120, 1998, pp.742-746. 

[4] P.F.Rizos, N.Aspragathos, A.D.Dimarogonas, 
“Identification of crack location and magnitude in a 

0,1

0,11

0,12

0,13

0,14

0,15

0,16

0,17

0,18

0,0 0,5 1,0

k

c/h

0,1

0,11

0,12

0,13

0,14

0,15

0,16

0,17

0,18

0,0 0,2 0,4 0,6 0,8 1,0

k

c/h

INTERNATIONAL JOURNAL OF MECHANICS

Issue 4, Volume 7, 2013 360



cantilever beam from the vibration modes”,Journal 
of Sound and Vibration,Vol.138, No.3, 1990, pp. 
381-388. 

[5] R.Y.Liang, F.K.Choy, J.Hu,“Detection of cracks in 
beam structures using measurements of natural 
frequencies”, J. Franklin Inst., Vol.328, No.4, 
1991, pp. 505-518. 

[6] M.Kisa, J.Brandon, M.Topcu,“Free vibration 
analysis of cracked beams by a combination of 
finite elements and component mode synthesis 
methods”,Computers and Structures,Vol. 67, 1998, 
pp.  215-223. 

[7] J.Lellep, E.Sakkov,„Bucklingof stepped composite 
columns“,Mechanics of Composite 
Meterials,Vol.42, No.1, 2006, pp. 63-72.  

[8] M.Krawczuk, W.Ostachowicz, „Damage indicators 
for diagnostic of fatigue cracks in structures by 
vibration measurements – a Survey“,Journalof 
Theoretical and Applied Mechanics, Vol. 34, No. 
2, 1996, pp.307—326. 

[9] W.Ostachowicz, M.Krawczuk,“Analysis of the 
effect of cracks on the natural frequencies of a 
cantilever beam”, Journal of Sound and 
Vibration,Vol.150, No.2, 1991, pp. 191—201. 

[10] K.Nikpour,“Diagnosis of axisymmetric cracks in 
orthotropic cylindrical shells by vibration 
measurement”, Compos. Science and Technol.,Vol. 
39, pp. 45—61. 

[11] K.Nikpour, A.Dimarogonas, “Local compliance of 
composite cracked bodies”, Composites Sci. and 
Technology, Vol. 38, 1988, pp. 209-223. 

[12] J. Lellep, ,L.Roots, ,“Vibrations of cylindrical 
shells with circumferential cracks”, WSEAS 
Transactions on Mathematics, Vol.9, No.9, 2010, 
pp. 689 - 699. 

[13]  J. Lellep, L. Roots, Vibration of stepped 
cylindrical shells with cracks, 3rd WSEAS 
International Conference on Engineering 
Mechanics, Structures, Engineering Geology 
(WORLDGEO’10), WSEAS Press, 2010, 116–121. 

[14]  J. Lellep, E. Puman, L. Roots, E. Tungel, 
Optimization of rotationally symmetric shells, 
Proc. 14th WSEAS Conf. Applied Mathematics, 
WSEAS Press, 2009, 233–238. 

[15] L. H.Donnell, Beams, Plates and Shells ,McGraw 
Hill, 1976. 

[16] БажановВ. Л., ГольденблатИ.И., КопновВ.А., 
ПоспеловА.Д., СинюковА.М., Пластинки и 
оболочки из стеклопластиков, Издательство 
«Высшая школа», М., 1970. 

[17] L.Roots, “Axisymmetric vibrations of composite 
and layered cylindrical shells with cracks”, 
Proceedings of the 6th International Conference on 
Engineering Mechanics, Structures, Engineering 
Geology ( EMESEG’13),WSEAS Press, 2013, pp. 
45-50. 

[18] G. R.Irwin, “Fracture mechanics”, In: Goodier 
J.N., Hoff N. J., Structural Mechanics, 
Pergamon Press, Oxford, 1960. 

[19] P.F.Rizos, N.Aspragathos,.A.D.Dimarogonas, 
“Identification of crack location and magnitude in a 
cantilever beam from the vibration modes”, 
Journal of Sound and Vibration, 1990, 138, # 3, 
381-388. 

[20] T.G.Chondros, A.D.Dimarogonas, J.Yao, 
“Vibration of a beam with a breathing crack”, 
Journal of Sound and Vibration , 2001,  239, # 1, 
57-67. 

[21] S.Kukla S., “Free vibration and stability of stepped 
columns with cracks”, Journal of Sound and 
Vibration, 2009, 319, 1301-1311. 

[22] D.Broek, Elementary engineering fracture 
mechanics, 1974. 

[23] T. L.Anderson, Fracture Mechanics, Taylor 
and Francis, Boca Raton, 2005. 

[24] K. B.Broberg, Cracks and Fracture, Academic 
Press, New York, 1999. 

[25] H.Tada, P.C.Paris, G.R.Irwin, Stress Analysis of 
Cracks Handbook, ASME, N.Y., 2000. 
 

CURRICULUM VITAE 

Larissa Roots 
Born: Aprill 8, 1960, Korosten, Ukraina 
Citizenship: Estonian Republic 
Marital status: Married, 1 child 
e-mail: larissa.roots@ut.ee , larissa.roots@uni-weimar.de . 
 
Education 
 
1967–1977     Secondary School # 7 (Korosten, Ukraina) 
1974- 1977    Mathematical school, Lomonosov Moscow State University 
1977–1983     St. Petersburg State Polytechnical Institute, Dep. of Phys.-
mech., (Mechanics and Control Processes Department - "Lurie's 
Department" - universally  recognized world center of fundamental and 
applied education in mechanics, 
http://www.eng.fea.ru/Mechanics_Control_Processes_Department.html) 
2004–2010   PhD student (scientific adviser- professor of Theoretical 
Mechanics JaanLellep),Institute of Mathematics 
(http://www.math.ut.ee/mm_eng), University ofTartu, Estonia 
 
Scientific work 
 
1983–1992   VNIIG Vedeneyev’s name, (http://www.eng.rushydro.ru/), 

research fellow 
2004– 2010   Extraordinary researcher at Institute of Applied Mathematics, 

University of Tartu 
2010 -             Institute of Mathematics, University ofTartu, Estonia,  
research fellow 
2012-2015           ISM, Bauhaus-University, Weimar, Germany, Post Doc. 

INTERNATIONAL JOURNAL OF MECHANICS

Issue 4, Volume 7, 2013 361

javascript:__doPostBack('ctl00$ContentPlaceHolder1$TeadusTulemPublikatsioonidOtsi1$GridViewPublicationSearch$ctl03$LinkButton1','')�
javascript:__doPostBack('ctl00$ContentPlaceHolder1$TeadusTulemPublikatsioonidOtsi1$GridViewPublicationSearch$ctl03$LinkButton1','')�
javascript:__doPostBack('ctl00$ContentPlaceHolder1$TeadusTulemPublikatsioonidOtsi1$GridViewPublicationSearch$ctl03$LinkButton1','')�
javascript:__doPostBack('ctl00$ContentPlaceHolder1$TeadusTulemPublikatsioonidOtsi1$GridViewPublicationSearch$ctl03$LinkButton1','')�
mailto:larissa.roots@ut.ee�
mailto:larissa.roots@uni-weimar.de�
http://www.eng.rushydro.ru/�



